
Welcome to R!∗

Neil S. Williams†

Welcome to R!
August 13, 2021

Contents
Getting started 3

Installing R and RStudio 3

Opening RStudio 3

Typing R commands 3

Error messages 4

R packages 5

Working directory 5

Comments 5

R help 6

Workflows and conventions 6
RStudio Projects . 6
RMarkdown . 6

Useful resources 8

R and object-oriented programming 8

Object types 8

Random numbers and distributions 10

Extracting elements from an object 12

Working with data sets 13
Importing data into R . 13

Describing data 15
∗Adapted from code and questions created by Johannes Karreth-jkarreth@ursinus.edu
†University of Georgia, snpwill@uga.edu

1

mailto:Karreth-jkarreth@ursinus.edu
mailto:snpwill@uga.edu

Creating figures 15
Base graphics . 15
The lattice package . 16
The ggplot2 package . 17

Exporting graphs 19

Test yourself 19
Exercise 1 . 19
Exercise 2 . 19
Exercise 3 . 19

2

Getting started

The purpose of this tutorial is to show the very basics of the R language so that participants who have not
used R before can complete the first assignment in this workshop. For information on the thousands of other
features of R, see the suggested resources below.

In this tutorial, R code that you would enter in your script file or in the command line is preceded by the >
character, and by + if the current line of code continues from a previous line. You do not need to type this
character in your own code. Note that copying and pasting code from the PDF version of this tutorial may
lead to errors when trying to execute code. Please copy code from the R script used to produce this tutorial;
this script can be found here.

Installing R and RStudio

The most recent version of R for all operating systems is always located at http://www.r-project.org/index.html.
Go directly to http://lib.stat.cmu.edu/R/CRAN/, and download the R version for your operating system.
Then, install R.

To operate R, you should rely on writing R scripts. We will write these scripts in RStudio. Download RStudio
from http://www.rstudio.org. Then, install it on your computer. Some text editors also offer integration
with R, so that you can send code directly to R. RStudio is generally the best solution for running R and
maintaining a reproducible workflow.

Lastly, install LaTeX in order to compile PDF files from within RStudio. To do this, follow the instructions
under http://www.jkarreth.net/latex.html, “Installation”. You won’t have to use LaTeX directly or learn
how to write LaTeX code in this workshop.

Opening RStudio

Upon opening the first time, RStudio will look like the screenshot below.

The window on the left is named “Console”. The point next to the blue “larger than” sign > is the “command
line”. You can tell R to perform actions by typing commands into this command line. We will rarely do this
and operate R through script files instead.

Typing R commands

In the following sections, I walk you through some basic R commands. In this tutorial and most other
materials you will see in this workshop, R commands and the resulting R output will appear in light grey
boxes. Output in this tutorial is always preceded by two ## signs.

To begin, see how R responds to commands. If you type a simple mathematical operation, R will return its
result(s):
1 + 1

[1] 2

2 * 3

[1] 6

10/3

3

http://www.neilswilliams.com/uploads/1/2/1/9/121979947/welcome_r.r
http://www.r-project.org/index.html
http://lib.stat.cmu.edu/R/CRAN/
http://www.rstudio.org
http://www.jkarreth.net/latex.html

Figure 1: Image upon opening RStudio

[1] 3.333333

Error messages

R will return error messages when a command is incorrect or when it cannot execute a command. Often,
these error messages are informative. You can often get more information by simply searching for an error
message on the web. Here, I try to add 1 and the letter a, which does not (yet) make sense as I haven’t
defined an object a yet and numbers and letters cannot be added:
1 + a

As your coding will become more complex, you may forget to complete a particular command. For example,
here I want to add 1 and the product of 2 and 4. But unless I add the parenthesis at the end of the line, or
in the immediately following line, this code won’t execute:
1 + (2 * 4)

[1] 9

While executing this command and looking at the console, you will notice that the little > on the left changes
into a +. This means that R is offering you a new line to finish the original command. If I type a right
parenthesis, R returns the result of my operation.

4

R packages

Many useful and important functions in R are provided via packages that need to be installed separately.
You can do this by using the Package Installer in the menu (Packages & Data – Package Installer in R or
Tools – Install Packages. . . in RStudio), or by typing
install.packages('rio')

in the R command line. Next, in every R session or script, you need to load the packages you want to use:
type
library("rio")

in the R command line. You only need to install packages once on your (or any) computer, but you need to
load them again in each R session.

Alternatively, if you only want to access one particular function from a package, but do not want to load the
whole package, you can use the packagename::function option.

Working directory

In most cases, it is useful to set a project-specific working directory—especially if you work with many files
and want to create graphics that you want to have printed to .pdf or .eps files. You can set the WD with this
command:
setwd('~/Documents/Dropbox/Uni/9 - ICPSR/2019/Applied
Bayes/Course materials/Labs/1 - R Basics/')

You can typically see your current working directory on top of the R console in RStudio, or you can obtain
the working directory with this command:
getwd()

[1] "/Users/neilwilliams/Dropbox/Workshops/Welcome to R"

RStudio also offers a very useful function to set up a whole project (File – New Project. . .). Projects
automatically create a working directory for you.

Comments

R scripts contain two types of text: R commands and comments. Commands are executed and perform
actions. Comments are part of a script, but they are not executed. Comments begin with the # sign.
Anything that follows after a # sign in the same line will be ignored by R. Compare what happens with the
following two lines:
1 + 1

[1] 2

1 + 1
1 + 1 # + 3

[1] 2

You should use comments frequently to annotate your script files in order to explain to yourself what you are
doing in a script file.

5

R help

Within R, you can access the help files for any command that exists by typing ?commandname or, for a list of
the commands within a package, by typing help(package = packagename). So, for instance:

?rnorm
help(package = "rio")

Workflows and conventions

There are many resources on how to structure your R workflow (think of routines like the ones suggested
by J. Scott Long in The Workflow of Data Analysis Using Stata), and I encourage you to search for and
maintain a consistent approach to working with R. It will make your life much, much easier—with regards
to collaboration, replication, and general efficiency. I recommend following the Project TIER protocol. In
addition, here are a few really important points that you might want to consider as you start using R:

• Never type commands into the R command line or the console. Always use a script file in RStudio and
execute your code from this script file using the “Run” button or the Command & Return (Mac) or
Control & Return (Windows) key combination.

• Always create and specify a working directory at the beginning of a script file. This will ensure that all
input and output of your project-specific work is in a location that makes sense. Comment your script
files!

• Save your script files in a project-specific working directory

• Use a consistent style when writing code. A good place to start is this style guide: http://adv-
r.had.co.nz/Style.html. Read through this style guide today and use this style from then on.

• In script files, try to break lines after 80 characters to keep your files readable.

• Do not use the attach() command.

RStudio Projects

RStudio also has a cool option to work with Rprojects. To open an RStudio Project go to the plus R box
next to the icon to create a script file. An image such as the one below will pop up:

• Using RStudio Projects

• Why to not use set(wd)

• Structuring R projects

RMarkdown

For project management and replication purposes, it is advantageous to combine your data analyis and writing
in one framework. RMarkdown, Sweave and knitr are great solutions for this. The RStudio website has a
good explanation of these options: http://rmarkdown.rstudio.com and https://support.rstudio.com/hc/en-
us/articles/200552056-Using-Sweave-and-knitr. This tutorial is written using Rmarkdown and knitr!

• See my document that created this tutorial here!

6

https://www.projecttier.org/tier-protocol/
http://adv-r.had.co.nz/Style.html
http://adv-r.had.co.nz/Style.html
https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
https://chrisvoncsefalvay.com/2018/08/09/structuring-r-projects/
http://rmarkdown.rstudio.com
https://support.rstudio.com/hc/en-us/articles/200552056-Using-Sweave-and-knitr
https://support.rstudio.com/hc/en-us/articles/200552056-Using-Sweave-and-knitr
http://www.neilswilliams.com/teaching.html

Figure 2: Opening a new project

7

Useful resources

As R has become one of the most popular programs for statistical computing, the number of resources in
print and online has increased dramatically. Searching for terms like “introduction to R software” will return
a huge number of results.

Some (of the many) good resources that I have encountered and found useful are:

• Common error messages

• WeAreRLadies (Twitter Community)

• R for Data Science (R4DS) Online Text Book

• R4DS (Twitter Community - based on the Book)

• RFDS (Slack Channel - based on the Book)

• R Markdown Cheat Sheet

• Fox and Weisberg, An R and S-Plus Companion to Applied Regression (2011, print). statmethods.net.
This website offers well-explained computer code to complete most of the data analysis tasks we use in
this workshop.

• Maindonald and Braun, Data Analysis and Graphics Using R (2006, print).

• Verzani, simpleR - Using R for Introductory Statistics.

R and object-oriented programming

R is an object-oriented programming language. This means that you, the user, create objects and work with
them. Objects can be of different types. To create an object, first type the object name, then the “assignment
character”, a leftward arrow <- or an =, then the content of an object. To display an object, simply type the
object’s name, and it will be printed to the console.1

You can then apply functions to objects. Most functions have names that are somewhat descriptive of
their purpose. For example, mean() calculates the mean of the numbers within the parentheses, and log()
calculates the natural logarithm of the number(s) within the parentheses.

Functions consist of a function name, the function’s arguments, and specific values passed to the arguments.
In symbolic terms:
function_name(argument1 = value, argument2 = value)

Here is a specific example of the function abbreviate, its first argument names.arg, and the value
"Regression" that I provide to the argument x:
abbreviate(names.arg = "Regression")

Regression
"Rgrs"

Object types

The following are the types of objects you need to be familiar with:
1A good overview of types of objects is here: http://www.statmethods.net/input/datatypes.html. Read this page and then

continue this tutorial

8

https://blog.revolutionanalytics.com/2015/03/the-most-common-r-error-messages.html
https://twitter.com/WeAreRLadies
https://r4ds.had.co.nz/
https://twitter.com/R4DScommunity
https://rfordatascience.slack.com/join/shared_invite/zt-n46lijeb-2RRzQ70U34eH530~PyZsmg#/shared-invite/email
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
http://www.statmethods.net/input/datatypes.html

• Scalars

• Vectors of different types

• Numeric (numbers)

• Character (words or letters): always entered between quotation marks "

• Factor (numbers with labels)

• Logical (TRUE or FALSE)

• Matrices

• Data frames

• Lists

Below, you find some more specific examples of different types of objects:

• Numbers:
x <- 1
x

[1] 1

y <- 2
x + y

[1] 3
x * y

[1] 2

x/y

[1] 0.5

yˆ2

[1] 4

log(x)

[1] 0

exp(x)

[1] 2.718282

xvec <- c(1, 2, 3, 4, 5)
xvec

[1] 1 2 3 4 5

xvec2 <- seq(from = 1, to = 5, by = 1)
xvec2

[1] 1 2 3 4 5

yvec <- rep(1, 5)
yvec

[1] 1 1 1 1 1

9

zvec <- xvec + yvec
zvec

[1] 2 3 4 5 6

• Matrices
mat1 <- matrix(data = c(1, 2, 3, 4, 5, 6), nrow = 3, byrow = TRUE)
mat1

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

mat2 <- matrix(data = seq(from = 6, to = 3.5, by = -0.5), nrow = 2,
byrow = T)

mat2

[,1] [,2] [,3]
[1,] 6.0 5.5 5.0
[2,] 4.5 4.0 3.5

mat1 %*% mat2

[,1] [,2] [,3]
[1,] 15 13.5 12
[2,] 36 32.5 29
[3,] 57 51.5 46

• Data frames (equivalent to data sets):
y <- c(1, 1, 3, 4, 7, 2)
x1 <- c(2, 4, 1, 8, 19, 11)
x2 <- c(-3, 4, -2, 0, 4, 20)
name <- c("Student 1", "Student 2", "Student 3", "Student 4", "Student 5",

"Student 6")
mydata <- data.frame(name, y, x1, x2)
mydata

name y x1 x2
1 Student 1 1 2 -3
2 Student 2 1 4 4
3 Student 3 3 1 -2
4 Student 4 4 8 0
5 Student 5 7 19 4
6 Student 6 2 11 20

Random numbers and distributions

You can use R to generate (random) draws from distributions. This will be important in the first assignment.
For instance, to generate 1000 draws from a normal distribution with a mean of 5 and standard deviation of
10, you would write:
draws <- rnorm(1000, mean = 5, sd = 10)
summary(draws)

10

Min. 1st Qu. Median Mean 3rd Qu. Max.
-25.962 -1.851 5.298 5.359 12.621 37.289

• Density plots:
draws <- rnorm(1000, mean = 5, sd = 10)
plot(density(draws), main = "This is a plot title", xlab = "Label for the X-axis",

ylab = "Label for the Y-axis")

−40 −20 0 20 40

0.
00

0.
01

0.
02

0.
03

0.
04

This is a plot title

Label for the X−axis

La
be

l f
or

 th
e

Y
−

ax
is

• Histograms:
draws <- rnorm(1000, mean = 5, sd = 10)
hist(draws)

11

Histogram of draws

draws

F
re

qu
en

cy

−30 −20 −10 0 10 20 30

0
50

10
0

15
0

20
0

Extracting elements from an object

• Elements from a vector:
vec <- c(4, 1, 5, 3)
vec[3]

[1] 5

• Variables from a data frame:
mydata$x1

[1] 2 4 1 8 19 11

mydata$names

NULL

• Columns from a matrix:
mat1[, 1]

[1] 1 3 5

• Rows from a matrix:
mat1[1,]

[1] 1 2

• Elements from a list

12

mylist <- list(x1, x2, y)
mylist[[1]]

[1] 2 4 1 8 19 11

Working with data sets

In most cases, you will not type up your data by hand, but use data sets that were created in other formats.
You can easily import such data sets into R.

Importing data into R

The “rio” package allows you to import data sets in a variety of formats with one single function, import().
You need to first load the package:
library("rio")

The import() function “guesses” the format of the data from the file type extension, so that a file ending in
.csv} is read in as a comma-separated value file. If the file typ extension does not reveal the type of data
(e.g., a tab-separated file saved with a .txt extension), you need to provide the format argument, as you see
in the first example below. See the help file for import() for more information.

Note that for each command, many options (in R language: arguments) are available; you will most likely
need to work with these options at some time, for instance when your source dataset (e.g., in Stata) has
value labels. Check the help files for the respective command in that case.

• Tab-separated files: If you have a text file with a simple tab-delimited table, where the first line
designates variable names:

mydata_from_tsv <- import("http://www.jkarreth.net/files/mydata.txt",
format = "tsv")

head(mydata_from_tsv)

y x1 x2
1 -0.56 1.22 -1.07
2 -0.23 0.36 -0.22
3 1.56 0.40 -1.03
4 0.07 0.11 -0.73
5 0.13 -0.56 -0.63
6 1.72 1.79 -1.69

mydata_from_tsv <- read.table("http://www.jkarreth.net/files/mydata.txt",
header = TRUE)

head(mydata_from_tsv)

y x1 x2
1 -0.56 1.22 -1.07
2 -0.23 0.36 -0.22
3 1.56 0.40 -1.03
4 0.07 0.11 -0.73
5 0.13 -0.56 -0.63
6 1.72 1.79 -1.69

• CSV files: If you have a text file with a simple tab-delimited table, where the first line designates
variable names:

13

mydata_from_csv <- import("http://www.jkarreth.net/files/mydata.csv")
head(mydata_from_csv)

y x1 x2
1 -0.56 1.22 -1.07
2 -0.23 0.36 -0.22
3 1.56 0.40 -1.03
4 0.07 0.11 -0.73
5 0.13 -0.56 -0.63
6 1.72 1.79 -1.69

Alternatively, use read.csv() specifically for comma-separated files:
mydata_from_csv <- read.csv("http://www.jkarreth.net/files/mydata.csv")
head(mydata_from_csv)

y x1 x2
1 -0.56 1.22 -1.07
2 -0.23 0.36 -0.22
3 1.56 0.40 -1.03
4 0.07 0.11 -0.73
5 0.13 -0.56 -0.63
6 1.72 1.79 -1.69

SPSS files: If you have an SPSS data file, you can do this:
mydata_from_spss <- import("http://www.jkarreth.net/files/mydata.sav")
head(mydata_from_spss)

y x1 x2
1 -0.56 1.22 -1.07
2 -0.23 0.36 -0.22
3 1.56 0.40 -1.03
4 0.07 0.11 -0.73
5 0.13 -0.56 -0.63
6 1.72 1.79 -1.69

Stata files: If you have a Stata data file, you can do this:
mydata_from_dta <- import("http://www.jkarreth.net/files/mydata.dta")
head(mydata_from_dta)

y x1 x2
1 -0.56 1.22 -1.07
2 -0.23 0.36 -0.22
3 1.56 0.40 -1.03
4 0.07 0.11 -0.73
5 0.13 -0.56 -0.63
6 1.72 1.79 -1.69

Alternatively, use read.dta() from the “foreign” package specifically for Stata files:
library("foreign")
mydata_from_dta <- read.dta("http://www.jkarreth.net/files/mydata.dta")
head(mydata_from_dta)

y x1 x2
1 -0.56 1.22 -1.07
2 -0.23 0.36 -0.22

14

3 1.56 0.40 -1.03
4 0.07 0.11 -0.73
5 0.13 -0.56 -0.63
6 1.72 1.79 -1.69

Describing data

To obtain descriptive statistics of a dataset, or a variable, use the summary command:
summary(mydata_from_dta)

y x1 x2
Min. :-1.2700 Min. :-1.970 Min. :-1.6900
1st Qu.:-0.5325 1st Qu.:-0.325 1st Qu.:-1.0600
Median :-0.0800 Median : 0.380 Median :-0.6800
Mean : 0.0740 Mean : 0.208 Mean :-0.4270
3rd Qu.: 0.3775 3rd Qu.: 0.650 3rd Qu.: 0.0575
Max. : 1.7200 Max. : 1.790 Max. : 1.2500

summary(mydata_from_dta$y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.2700 -0.5325 -0.0800 0.0740 0.3775 1.7200

You can access particular quantities, such as standard deviations and quantiles (in this case the 5th and 95th
percentiles), with the respective functions:
sd(mydata_from_dta$y)

[1] 0.9561869

quantile(mydata_from_dta$y, probs = c(0.05, 0.95))

5% 95%
-1.009 1.648

Creating figures

R offers several options to create figures. We will work with the so-called “base graphics”, mostly using the
plot() function, and the “ggplot2” package.

Base graphics

R’s base graphics are very versatile and ideal for creating quick plots to inspect objects. These graphs
are built sequentially, beginning with the plot() command applied to an object. So, for instance to plot
the density of 1000 draws from a normal distribution, you would use the following code. I’m using the
set.seed() command here before every simulation to ensure that the same values are drawn when you try
these commands and make these plots.
set.seed(123)
dist1 <- rnorm(n = 1000, mean = 0, sd = 1)
set.seed(123)
dist2 <- rnorm(1000, mean = 0, sd = 2)

15

plot(density(dist1))
lines(density(dist2), col = "red")

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

density.default(x = dist1)

N = 1000 Bandwidth = 0.2181

D
en

si
ty

The lattice package

The “lattice” package has long been popular for visualizing more complex data structures, e.g. nested data.
For plotting Bayesian model output, lattice offers some useful features.

lattice needs to be first loaded as an external package. It offers a variety of plots, some of them specifically
built-in (densityplot or dotplot) and many other plots can be built with xyplot. The command below
contains a couple more data manipulation steps that will come in handy for us later; we will discuss them in
the workshop. Here, I use the reshape2::melt command to reshape the data so they can be plotted in one
figure. When trying the code below, have a look at the structure of the dist.dat object to see what’s going on.
library("lattice")
library("reshape2")
set.seed(123)
dist1 <- rnorm(n = 1000, mean = 0, sd = 1)
set.seed(123)
dist2 <- rnorm(1000, mean = 0, sd = 2)
dist.df <- data.frame(dist1, dist2)
dist.df <- melt(dist.df)

No id variables; using all as measure variables

head(dist.df)

variable value
1 dist1 -0.56047565
2 dist1 -0.23017749

16

3 dist1 1.55870831
4 dist1 0.07050839
5 dist1 0.12928774
6 dist1 1.71506499

densityplot(~value, data = dist.df, groups = variable, plot.points = FALSE,
auto.key = TRUE)

value

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

−5 0 5

dist1
dist2

The ggplot2 package

The “ggplot2” package has become popular because its language and plotting sequence can be somewhat
more convenient (depending on users’ background), especially when working with more complex datasets.
For plotting Bayesian model output, ggplot2 offers some useful features. I will mostly use ggplot2 in this
workshop because (in my opinion) it offers a quick and scalable way to produce figures that are useful for
diagnostics and publication-quality output alike.

ggplot2 needs to be first loaded as an external package. Its key commands are ggplot() and various types of
plots, passed to R via geom_ commands. All commands are added via +, either in one line or in a new line to
an existing ggplot2 object. The command below contains a couple more data manipulation steps that will
come in handy for us later; we will discuss them in the workshop. Here, I use the reshape2::melt command
to reshape the data so they can be plotted in one figure. When trying the code below, have a look at the
structure of the dist.dat object to see what’s going on.
library("ggplot2")
library("reshape2")

set.seed(123)
dist1 <- rnorm(n = 1000, mean = 0, sd = 1)
set.seed(123)

17

dist2 <- rnorm(1000, mean = 0, sd = 2)
dist.df <- data.frame(dist1, dist2)
dist.df <- melt(dist.df)

No id variables; using all as measure variables

head(dist.df)

variable value
1 dist1 -0.56047565
2 dist1 -0.23017749
3 dist1 1.55870831
4 dist1 0.07050839
5 dist1 0.12928774
6 dist1 1.71506499

normal.plot <- ggplot(data = dist.df, aes(x = value, colour = variable,
fill = variable))

normal.plot <- normal.plot + geom_density(alpha = 0.5)
normal.plot

0.0

0.1

0.2

0.3

0.4

−6 −3 0 3 6
value

de
ns

ity

variable

dist1

dist2

ggplot2 offers plenty of opportunities for customizing plots; we will also encounter these later on in the
workshop. You can also have a look at Winston Chang’s R Graphics Cookbook for plenty of examples of
ggplot2 customization: http://www.cookbook-r.com/Graphs.

18

http://www.cookbook-r.com/Graphs

Exporting graphs

Plots created via base graphics can be printed to a PDF file using the pdf() command. This code:
set.seed(123)
dist1 <- rnorm(n = 1000, mean = 0, sd = 1)
set.seed(123)
dist2 <- rnorm(1000, mean = 0, sd = 2)
pdf("normal_plot.pdf", width = 5, height = 5)
plot(density(dist1))
lines(density(dist2), col = "red")
dev.off()

pdf
2

will print a plot named normal_plot.pdf of the size 5 by 5 inches to your working directory.

Plots created with ggplot2 are best saved using the ggsave() command:
ggsave(plot = normal.plot, filename = "normal_ggplot.pdf", width = 5,

height = 5, unit = "in")

Test yourself

Exercise 1

Create an R script that performs the following operations: - Sets an assignment-specific working directory,
e.g. /Users/Welcome_to_R/Practice/practice_doc.

• Calculates the mean and standard deviation of this series of numbers: 37,-6,-38,12,-2

Exercise 2

Go to http://gss.norc.org/ and download the General Social Survey raw data for 2014 in SPSS or Stata
format. Save this file in an assignment-specific working directory. Then, create an R script that performs the
following operations:

• Reads the GSS data into R

• Shows the number of respondents in this survey file

• Creates a histogram of the distribution of age of all respondents in the survey

Exercise 3

Create an R script that creates a fake data set representing 1500 observations. The data set should contain
three variables:

• an index variable that identifies each respondent, ranging from 1 to 1500

• a binary variable that represents (fake) information on whether a respondent voted in the 2012 U.S.
presidential election (1 if yes, 0 if not). Create this (fake) variable assuming that the respondents are
randomly drawn from the U.S. population and that the turnout rate in this (fake) sample is more or
less representative of the actual turnout rate in the 2012 presidential election.

19

http://gss.norc.org/

• a categorical variable for one of the four U.S. census regions (Northeast, South, Midwest, West). Assume
that respondents are randomly drawn from these regions at equal probability.

• Save this fake dataset as a .csv file to your working directory. Then provide summary statistics for it.

20

	Getting started
	Installing R and RStudio
	Opening RStudio
	Typing R commands
	Error messages
	R packages
	Working directory
	Comments
	R help
	Workflows and conventions
	RStudio Projects
	RMarkdown

	Useful resources
	R and object-oriented programming
	Object types
	Random numbers and distributions
	Extracting elements from an object
	Working with data sets
	Importing data into R

	Describing data
	Creating figures
	Base graphics
	The lattice package
	The ggplot2 package

	Exporting graphs
	Test yourself
	Exercise 1
	Exercise 2
	Exercise 3

